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CONFORMAL MAPPING OF A CLASS OF
DOUBLY CONNECTED REGIONS*

o~
Abstract 90’7 5
It is shown in the present investigation that the system of
two integral equations obtained by Kantorovitch and Muratov for the
conformal mapping of an arbitrary, finite, doubly connected region
onto a circular annulus simplifies considerably when the configuration
has one or more axes of symmetry and one of the boundaries is a circle,
Once the correspondence between boundary points is established the
function which maps the annulus BE in the ¢g-plane onto the given
domain Bz in the z-plane is obtained by a procedure of successive
approximations. The method is illustrated in several cases where
the web fraction is close to one. '
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INTRODUCTION

Solution of a large number of problems of importance in modern
technology hinges critically on the possibility of conformal transforma-
tion of a doubly connected region onto a circular annulus, For example,
the analysis of stresses in a solid propellant rocket grain by means of
complex variable techniques requires the conformal transformation of
an annulus onto a region with a circular external boundary and an internal
boundary which generally consists of several identical and symmetrical
parts which form a star shaped configuration, Wilson [1]1 has solved
this problem in the case that the web frac'cion2 is relatively small., It
can be shown that Wilson's approach leads to large error in mapping the
external circle when the web fraction exceeds certain values which depend
upon the number of axes of symmetry.

For example, Arango [2] has shown that for four axes of symmetry
the error increases rapidly when the web fraction increases beyond 0.5.
When the web fraction reaches the value 0.90, the outer boundary has lost
all semblance of a circle. This error arises due to the fact that Wilson

and Arango treated the conformmal transformation of an infinite domain

1Numbers in brackets designate References at the end of the paper.

2Web fraction w in defined as the ratio of the diameter of the circle
circumscribing the inner boundary of a doubly connected region to the

diameter of the circle circumscribing the outer boundary.

=2=



with a hole onto another such region. Consequently, while the mapping
function accurately transforms the unit circle in the &-plane into the
internal boundary in the z-plane, the external boundary transfomms only
approximately into a circle.

However the approximation can be very accurate provided the web
fraction is sufficiently small, This concern with the accuracy of the
transformation of the extemal boundary is of substantial importance since,
while the web fraction may be sufficiently small in the unburned solid
propellant grain, it will increase toward unity as a consequence of the
burning process. It should be clear, therefore, that it is essential to
develop techniques for the conformal transformation of finite, doubly
connected domains,

Kantorovitch and Muratov [3] have shown that the problem of conformal
transformation of an arbitrary, finite, doubly connected region onto a
circular annulus can be reduced to the solution of two coupled integral

equations for the unknown functional dependence

ei. = ei(wi) i=12)

where the subscripts 1 and 2 designate the inner and outer contour,
respectively; and @ and ¢ are the arguments in the z and ¢ planes, respectively,
(See Fig., 1), If the configuration has one or more axes of symmetry
and one of the boundaries is a circle, it is shown in this investigation
that the system of two integral equations simplifies considerably,

Once o = ei((bi) is obtained Kantorovitch and Muratov [3] derived

a straight forward technique for detemining the conformal transformation
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g = £(z)

However for convenience in applications (mathematical theory of elasticity,
vibrations,etc.), it is important to know the function which maps an

annulus onto the given shape; i.e.,

z=1z()

Clearly, if &= g(z) is known, in principle, one could determine
z = z(¢ ). However, it is more convenient to detemmine z = z(g )

directly once both integral equations are solved.




DERIVATION OF THE INTEGRAL EQUATIONS

Let us consider an arbitrary, finite, doubly connected domain BZ
in the z-plane., (See Fig, 1). We denote by ¢ = f(z) the function which

maps Bz into the circular annulus B_ in the ¢-plane; the curve C2

8/01 <1, We

g
transforms into the wunit circle and C1 into the circle | E

define
F(z) =1n £ (2) = Ing = n O+ ie (1)

wherein, for emphasis, we point out that z represents a generic point in
B_.
z

Introducing a cut L in the domain Bz (see Fig. 2) and applying the

Cauchy integral formula results in

F(z)= | [ F(t) 4t _§
2TTL C, t-7 €,

Z, y)
F(t)ydt 2 B(t) dt
gt ] Epete (" gy ]
|
! () (L)

2

F(z) is not single valued in B‘z; with every cycle around C1 the imaginary

part increases by 2r i, Consequently,

Z Z
- ' F(t
s [ e famet ]y o o
(L*) (L) '
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In order to calculate its value we can express 2 in the following form:

0% (Fte - E)e) Je
2= EZ%FT.S T-2 el d

Z,

But
F(t) IL- =mpP+ig
and
F(t) il ln/0+ i(e+ 2n)
Thus
F(t) |L- —F(t) |+ = -2mi
and Eq. (3b) becomes
zz_fz dt - A 222
z t-z Z, -2

Substituting Eq. (3e) in Eq. (2) we obtain

(3b)

(3¢c)

(3d)

(3e)



For points on C2 we define

F(z) = In0, + i8,(q,) = 18 ,(q)
since /0 5 = 1; and for points on C1 we define
F(z) = P, + ie; ()

wherein @ 1 and O ? denote the arc lengths on the boundaries C1 and C2 L

respectively, from arbitrary fixed points on the respective boundaries

to the points under consideration. Thus the first term on the right

hand side of (4a) becomes:

1 F(t) it =1 3é %22 at
e c
2

2 wi 2 t-z 2n t-z

Similarly the second term results in:

t-z

S F() dt - -_ | Qng dt _ _L_ L 8,(a
2”i§t-z B 2rr£§t-z eré—l

1

The expression éc In/O 1 de vanishes identically since
1

t-z



/0 1 is a constant and the integrand is analytic within and on the

boundary of C1 (Cauchy-Goursat Theorem)., Thus Eq. (4a) can be written:

F(2) = _1 62(02) dt _ 1t L B/(T) dt _Un 2;-2
2m ¢, Z:z-Z eri‘é, -2 ” Z,-Z (%)

This equation can be more conveniently written if we use the

following relations (see Figure 2).

t-z = t-zl el? = rel®
_ lw

z1 z = rle. 1
= 1w

z2 z = rze 2

wz'wl = B

d~ w = ﬂ/Z-(nt,r)

where oL is the angle between the positive counterclockwise direction of
the tangent to the boundary C; and the positive direction of the real

axes, w is the angle between r and the positive direction of the real

axes and n, is the inwardly directed normal to the boundary Ci' Additionally

we define:
dt = Idt, e1°c

or dt = da- e:Lec wherein dt =

4w |
is the magnitude of a differential element of the boundary Ci' Making

use of these definitions we can express dt/t-z as follows:




’ (2 -(he,e)) i (ne,
dt _e“do _ do e T _ldo e >r)
t-Z retw r r

Similarly:

o 2. |
I 2o-2 Ao B EN_0 1 &P _ta i
Zl—z n r‘l N

Now, Eq. (4b) becomes:

= L6 (cr\e—l(nt'r)d 1 [ ee ™ e
=2 _1 372 1

CZ ]
— ‘gn_{z_— (A

(4¢c)
T',

Equating the imaginary parts of (4c) we obtain:

o .—.z_in_ ; 6, @) cos(n, rda; —#é 6, (G)coi(ntlr) day —IG

T’
(5a)




wherein Eq. (1) has been used, If the point z is located on C2 the

first term of Eq. (5a) becomes:

L § 1 (i \cos(ne, ) oy 4 T O (oz)] (5b)
C

This is a well known result in the theory of the potential., *Thus,

Eq. (5a) becomes

6,(02) = - 2/8(0'7.) +_Tlr'é 6,(02)Cos(ny ) da,

2, "

8,(T)cos (Ny. rYdT,
"I

(6a)

If now the point z moves to C; the integral

{) B,(T)cos(ny r) AT,
2mr

c, r

*See Appendix.
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becomes

_'{CE 6,(07)cos ( ny,r)do; _wa]
2n r
|

and we obtain the second integral equation.

B, = _r_§ 6,(5\Cos (ne.r) doy — 1 9g 6,(5;)Cos (hy.r) do _
e r - T r
2 C

- 2B () .

(6b)

Equations (6) constitute the system of coupled integral equations which
we have been seeking., Their solution will yield the functional form

of the relations

6; = 64 (@1) i-=1,2)

or what is equivalent
ei = ei (¢1) (i=1,2)

Let us now simplify Eqs, (6) when C2 is a circle and the domain

BZ has p axes of symmetry. Consider the expression cos (nt, r) as it

T
appears in the first integral of Eq. (6a). From Fig. 5, since zEC2
2 _ . 2 ) 2 _
= xex)TH(y -y -
2 2 . . 2
=R" [(cos @ - cos ¢c )* + (sin @ - sin @ C) ] (7
r* = 2R% [1- cos (@ - 0_)] ©)

-11-



where X.s Ve and ¢C are the values of x, y and @ at the point z on C

2.
Additionally,
cos (nt, ) = cos P cosw + sin @ sin (9a)
and
Cos w =X - X_ = R (cos © - cos QC) (9b)
T T
sinw=y - Yo = R (sin @ - sin ¢C) (9¢)
T T

Substituting (9b) and (9¢) into (9a) we obtain:

cos (nt, r) =R [cos @ (cos @ - cos ¢C) + sin @ (sin @ - sin ¢c)]
T
Rearrangement leads to

cos (nt, r) =R [1-cos (P - ¢C)] (9d)

r 1'2

Substituting (8) in (9d) we finally obtain:

cos (nt,r) =1

r 2R (10)

Then, the line integral under consideration becames:

6,(a) cos (ne,r)doy :.1_35 02 (0:) doy,
2R
C

r
2



"q:'!w
so that substitution into Eq. (6a) yields ‘

ez(cz)=-zp(02)+m§ 6, (a2 doy, _

2)

- L L 6,(F)cos(ne r) doy
m c, r

(11)

It should be reemphasized that Eq. (11) is to be used rather than Eq. (6a)
when C2 is a circle, Note that no assumptions of symmetry of the given
doubly connected domain have been introduced up to this point,

Further important simplifications can be made in Eq. (11) when
symmetry conditions are introduced. For the purpose of making these

simplifications it is necessary to study the behaviour of the functional

relation
eZ = 92(0-2) = 92 (pz)

We now introduce the condition that the domain Bz has p-axes of
symmetry, For example, the illustrative domain of Fig, 5 has four
axes of symmetry so the p = 4,

We define now:
5, () = 8, +Y @) (12)

Since the configuration has p-axes of symmetry, it is reasonable to

expect that 1 (¢2) will be a periodic function of period 2 n/p.

-13-



Furthemore it will be shown that ) ((Z)Z) is an odd function of ¢2.
Consider a point P (on the outer boundary) with argument fDZ. Its

image point in the¢-.plane will have an argument 8,e Because of symmetry,
if we take a point P(l) on the outer boundary C2 with argument

(2 n/p - Q)Z) (See Figure 6), its image point in the ¢ -plane will have

an argument

(2Zr_ - 0) =21~ (B, + X (8]
P P

wherein we have used Eq. (12).

Similarly points P(k) on C2 with arguments

Zn -9 k = 1,2,...p)
P

will have image points in the £ -plane with arguments given by

Zkn_ - & k= 1,2,...p)
P

The point P(p) on C2 with argument
2n - ¢2

has an image point in the £-plane with argument
2 -0, =21 - 9, - X (@)

wherein we have used Eq. (12) once again, On the other hand P(p)

-14-




has an alternative argument (-(02) in the z-plane and its image point

in the ¥ -plane has the altemative argument

-pz +J( (- ﬂz)

From these alternative expressions for the argument of the image

point of P(p) in the & -plane we obtain
'¢2 '1 (Qz) = 'wz +X (-pz)
or
X -9, = - X (@)

Thus Y UDZ) is an odd function of ¢2. It can be shown that X(ﬂz)
complies with the well known Dirichlet conditions; and, therefore

can be expanded in a Fourier sine series, i.e,:

X(¢z>=,§| brn sin(pn¢y) (13)

We return once again to the problem of simplifying Eq. (11). In view

of Eq. (12) we can write

ZM§ G(O‘z\do',__zT_r_jg b, oy, + _él(ctz)do'z

-15-



Since dGé = Rd ¢2, it follows that

_'35 6,(93)d%;, = ;f
ZmRr 20
=73 o

2T

so that

In view of this result, Eq. (11) becomes

8, (%) = ~2B (T + T - ;& 6,(T) cos (he,r) do;
Ly <, r

ZECZ * o o o o -(14)

In summary, it has been shown that when C2 is a circle and the
domain Bz has p-axes of symmetry, the applicable integral equations are
Eqs, (6b) and (14).

By an analogous argument it can be shown that when C1 is a circle
and the domain Bz has p-axes of symmetry, the applicable integral

equations are Eq., (6a) and the following

6,(3) = -2 B(3) +_'-é 6,(0.)Cos (ne.r) da; - T
T 3 r

zﬁcl. e o o +(15)




NUMERICAL SOULUTION OF THE INTEGRAL EQUATIONS

We shall 1limit all further discussions to cases wherein the
outer boundary C2 of the domain Bz is circular and Bz has p-axes of
symmetry, Thus in order to relate (t)i , the argument of a point on the
boundary C, of the domain B, in the z-plane, and 6,, the argument of

the image point on the boundary e i of the domain B, in the ¢-plane,

g
we must integrate Egs. .(6b) and (14)., Closed fomm solution of these
integral equations seems extremely difficult so we must be satisfied
with numerical solution thereof,

The explanation of the numerical procedure is readily presented in
terms of a specific example, Therefore we consider the domain B, of
Fig., 7 wherein the inner boundary is square with sides parallel to the
coordinate axes. Clearly, B 2 has four axes of symmetry so that p = 4
in this case. We begin the numerical procedure by subdividing the
boundaries C1 and C2 into any arbitrary number of small segments which,
in general, need not be equal in length. In the specific example we take
40 equally-spaced points on each boundary numbered as shown in Fig. 7.
The arc-length between points on C1 is denoted by A G, and on C2 by
AG,,

The theoretical development required the introduction of a cut
between C1 and C2 as shown in Fig. 2. Thus, the next step is to intro-
duce such a cut in B, of Fig. 7. It will be convenient to take this cut
along the positive half of the x-axis, Thus, the cut runs from point

1 on C1 to point 1 on CZ'

-17-



We consider first the integration of Eq. (14). We select a typical
point on Cys for example, the point 2, Associated with this point is its
image point, (2) on & 2 We denote the argument associated with the image
point by 62,2 wherein the first subscript indicates the fact that the
point under consideration lies on XZ while the second subscript indicates
the point itself, Thus, 62,6 denotes the argument of point 6 on)(z
and 91’11 denotes the argument of point 11 on bjl. We must now construct
lines from the ends of the cut through the point under consideration; i.e,
lines from point 1 on C1 and point 1 on C, through the point 2 on CZ'

The angle enclosed between these lines is the angle 3(0'2) of Eq. (14)
and for numerical purposes it is denoted by 8 2,2° see Fig, 7. Now Eq. (14)

can be rewritten as follows:

Oz = -2 B2 + T~ '4) 8, (T) cos(ne,r) Aoy
> J 1T,
C

r
\

(16)

The angle By 5 is obtained from Fig. 7 by simple trigonometry., Using
’

the law of cosines gives

‘
b2+Cz _ aZ
2bc

) 2 2 2 ’I/Z
-cos ' éé[( 22 T 40y, Y )ZJ[( Yo B ¥ \/z,z]}

2 y 2 2
E"z,z'j‘w) +(>’L,1-\/,),) +(¥ - %) "(712,1-7’/,,)]

ﬁz’z - Cos

=]18=



In this expression we have adopted the following notation: the coordinates
of the point 2 on C, are given by (x2,2’ yz’z). Thus, (xz’l, yz’l) denote
the coordinates of point 1 on Cz; (xl,l’ yl,l) denote the coordinates of
point 1 on Cl' Clearly, the first subscript denotes the boundary (C1 or Cz)
on which the point lies while the second subscript denotes the point

itself. Now, we consider the evaluation of the line integral in Eq. (16).
We construct a line from point 2 on C, to a typical point 10 on Ci»

see Fig, 7. We construct the inwardly-directed unit normal Nt to C1

at point 10 as shown. The angle enclosed by this normal and the constructed
line is the angle (nt, r). It will prove convenient at this point to
define the angle wl,lO' the angle included between the outwardly directed

unit normal to C1 at 10 and the x-direction. Clearly, from Fig. 7, we get:

1,10

(nt,r) = w -y 1,10
2,2
1,10
wherein w denotes the angle associated with the point 2 on C2 (we
4,2

use subscr{pts 2,2) between the x-direction and the line from point 2

on C2 to point 10 on Cl' Now

1,10
cos (n,,r) = cos ( wz ) = ¥1,10 )
1

or

cos(Ne,r) - (%, 10 Xg 5, )OS W',o + (Y-,,o'\/z,z Ysin _%,«o
r
()lhlo-?fz’z,)z-i- (y/,/o —yz,,z,)z

-19-




It must be pointed out that this expression is associated only with the

points 2,2 and 1,10, The integrand of the line integral can now be

written as
1,10
® 1,10 Fz’z AT
wherein
no ~
Fo, = (X.‘}.o—xz,z)cos%,,o + (Yo -y, ,)sIn %10

!

(xr,lo - Xz,,z.\z + (Yr,lo - ‘/z.‘\,z\)a

We have considered only one point, 10 on the boundary Cl’ but in accord
with Eq. (16) we must perform a line integration over the entire
boundary Cl' Thus, we must follow the procedure outlined above for point
10 on C1 for all points on C1 and then, and only then, can we approximate

the line integral by a sum, It follows then, that Eq. (16) becomes

;0 R
€2 = ‘Z/BZ,Z+T'"F§ %q 2,2 AT
=|

We can generalize this result to apply to any point i on Cz", i.e.,

40 L9 ,
ezli = —2/8202.' - ,FQZ 6”9 F’Z,i Aq -; (L= 2-’3’4)5)
=1



where

(]
E

2,1 z \(7‘,’5 - Zz’i\COS ;ZI)J +(y/)j - \/z”i) Sin u’)J'

(5 = %2,0)" + (Y55
(J: ’729"'740) a7)

and

,52,1 = cos' T’a' [(Xz)i - ’z,q,\z + Va1 - y,‘,)z] l—_(xzq;— xz,,)z +
e R
( Xe i “Xz,o)z“ ( X201~ X'a')z.] (17¢)

Because of symmetry we have the following relationship

i=1,2
- LT g
ei’5j+1 +i,5j*1 J /4’ J 0’1)2,0 o o .7

Consequently, we do not require relationships such as Eq. (17),
corresponding to those boundary points which lie on axes of symmetry.
Thus, we have four Eqs. (17) corresponding to i = 2,3,4,5 among the

following unknowns:

92,22 82,3 82,40 %25

-21-



and

01,27 ®1,3» 8,40 95

Clearly, four additional equations are required and these we obtain in a
similar fashion from Eq. (6b). Following a procedure similar to that used

in establishing Eq. (17) we obtain the following from Eq. (6b)

40 2,2 40 1,9
B,:=-28, ; o é‘ ©2,q F.. ATz ‘111‘%| 8,0 Fi,i AT

(18a)

i=2,3,4,5)

where 2
F-l:i, - (742,19- X,,i)cos #z,g: -+ (9279 - )‘"i) sin '3/—279

(¥z,9 - x:,i)z‘*' (Ye,q - 9L,i.)z
(@=1,2,""* 40)

-1
ﬁl-,i = COé' —é{ﬁxl.ﬁ -xl,l)2‘+ (\/")i ‘Y'a’)z] [(X,,){ - XZ,I\Z"‘ YI: ]} /z

2
E(?Z;,i - Yl.)l\z‘f' (9,# - 7,7,) + (Yl.,i "Xz’/ )Z‘ (712,; _}/’7,)2_]
(18c)




L9
F . = (X,g-%,:Ycos ¥,9 + (Y,g-Yni)sin%,g

T
2
(%1rq = X131 Y+ Jg= Y3 )

5

(9= h2, '”740)
t# 9

(18d)

1,9

It is important to point out that F ’ becomes indeterminate when q = i.
1,i

It is necessary to evaluate the limit of Eq. (18d) when q-#i. Since

1,4 = *1,q( )

and

Y1,q = yl’q( g

it is easy to see that:

Thus, using L'Hopital's Theorem:

-23-



Lt 1,4

) )
F_'oL ) Cli'-:? F"' ) g—Ti (X,,’a -X,’;)Y’ﬂ - (YI,&-)’I,I.)X’,Q.

2, (X,’q_‘—x,)i )X"';Q. +z()}l)g - \)I’i )y;‘)&

[ mo_ w
=é/_f,7'i> Xisq Yig +(Xisg Xt VWig ~ Vg Xing ~(Yig = Yi,i YX1ng

¥ N Y% 2 1)
2Xq TEX o X (WXig +2919 +2(Yq-Y,: g

YN \ W
RS I NE

Z(xl>i + ‘)/)i )

(18e)

Where le . is the radius of curvature at point i on C,.* Equations

»1 1
(17a) and (18a) constitute a system of eight unknown arguments which we
must now solve. Clearly, we obtain eight equations because of the number
of points chosen on the boundaries of Bz. If we subdivide C1 and C2
into 2pN segments where N is any integer we shall obtain 2(N - 1)

equations analogous Eqs. (17) and (18) in 2(N - 1) unknown arguments; viz.,

ZP’J ,’a
Qz,i =28+ _TII'QZ-I Ong Fzi AT

(i= 23,4, sN) (I198)

*See Ref., (5), p. 151,

-24-



wherein the quantities F are given by Eqs. (17b), (18b) and (18d)
except that j and q range from 1 to 2pN. In the specific problem

considered, Fig. 7, N = 5 so we obtained eight equations.

-25-




APPLICATIONS OF THE NUMERICAL PROCEDURE

For a given domain BZ with p-axes of symmetry it is necessary to

select first the number 2pN of segments along C. and C2 or in essence to

1
select the integer value N, For

0 <@ <2 G =1,2)

we shall have 2pN points. The coordinates of the points along C2

are very easily determined to be

X, T R cos (k-1) T tk=1,2,., . .2pN
1 4
N.p
y = R Sin (k‘”l) hif H k = 1’2’0 * o sz
N.p

where R is the radius of Cz. The angle ZLZ X is easily seen to be
’

wz’ k= k-1) n :k=1,2,, .. 2N
N.p
The coordinates (x, _, Y, .) of points on C, constitute given data
1,a* “1,q 1

since the boundary C, is given in the form of an analytical expression

1
relating the coordinate variables of points on Cl’ or in the fom of a
table expressing the same relationship or in some other equivalent form,

Thus, x and yl,q for the preselected points on C, are determined in a

1,q
suitable manner depending upon how C1 is defined. The detemmination of the
angles y 1,q can be done graphically or analytically., An exact determi-

’

nation of y 1,q will require the knowledge of
4

-26-



y = y(x)

or the equivalent formulation

Y1 = yl (CTi)
x; =% (Ty)
Thus:
v = tan"! [- dx, dy, ]
0y dq

If N is large, an accurate determination can be done by replacing

dx, dyy

aq; aaq

AV
AG" = xl,ﬂ_‘xl\q_|

Ay,

with

AT Yha - ¥, a-

As a numerical example let us consider the domain Bz, shown, in Fig. 8,
with a square inner boundary (Cl) and a circular outer boundary (CZ). It

is of interest to point out that the web fraction w for this domain is 0,75.
We begin by taking N = 5 so the 2pN = 40 since there are four axes of
symmetry, The next step is to evaluate the coordinates, (xl,i’ yl,i)

and (xz’i, yz,i) of the pre-selected points on the boundaries ¢y and Css

respectively, as explained in the preceding paragraphs, Next, the angles
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¥4 and ¥, ; are determined analytically or graphically as appropriate.
’ ]

With the above as input information Eqs. (19) were solved on an IBM

7090 digital computer for the eight unknown angles; viz.,

¢ i=1,2
6. . = 0. .
i,) i,] ( 1.3)’
=23, . .8

The functional relations 8, = 8 ((#)i’j) are shown in Figs. 9 and‘ 10, We
notice that 8y is negative for O <0, <13°, This is not admissible for a
one to one correspondence between points ong/1 and Cl; for one value of
8 we have two different values of 4) Clearly the number of divisions
taken is not enough for an accurate determination of the relations

o5 = 05y
Taking 2pN

80 (N = 10) the situation improves considerably and

for 2pN = 160(N

20) 6, is positive for all values of ¢1. Comparing
Figures 9 and 10 we notice that the functional relation e1 = 61(1>1) is
very sensitive to the number of intervals taken along Cl' However

6 ,= 8, (¢2) does not change in such a drastic manner when the number of
divisions is increased, This result is not unexpected since the numerical
procedure requires solution of Egqs. (6b) and (14). In Eq. (14) it is
necessary to integrate once numerically while in Eq. (6b) it is necessary

to integrate twice by numerical procedures. Therefore we expect a greater

accunulation of error in Eq. (6b).
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Figure 11 shows the functional relations 8, = 6, ($1) for a domain
B, shown in Fig. 12, The web fracFion w is equal to 0.91.

A domain with an hexagonal inner boundary is shown in Figure 13,
The calculated values of 6, as functions of ¢i are shown in Figure 14,
for 2pN = 120 (p = 6 in this case).

It is one of the objectives of this investigation to consider the
influence of the web fraction on the relation 0; = 6, (¢i). Comparing
6, =0, (¢2) (Figure 10) corresponding to w = 0,75 and 0, = 6, (¢2)
(Figure 11) corresponding to w = 0,91 we immediately notice the fact
that as w decreases, the functional relation between 8, and (1)2 approaches
6, = +2. This conclusion agrees with Wilson[1] who developed a very
interesting method for obtaining the mapping function when the web
fraction is relatively small. This is further illustrated for the case
of a star-shaped perforation (Figure 15). As shown in Figure 16 for
the configuration of Figure 15, as the web fraction w decreases the

functional relation 8, = 8, (?2) approaches the expression 6, = *2.
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THE MAPPING FUNCTION

Concerning the transformation of an annulus onto an arbitrary
dowly connected region, the following theorem is known [4]:

"Any doubly connected region can be transformed, conformally

and with reciprocal single - valuedness, into an annulus with

the radii of its bounding circumferences finite or infinite,"
We are concerned with a domain B 2 wherein the outer boundary C2 is
circular and Bz has p-axes of symmetry, We denote the radii of the
circumferences X 1 and 2(2 corresponding to Gy and C, by /0 1 and /02,
respectively. Once we specify which of the boundary curves of the region
must pass to the outer and which to the inner circumference of the
annulus the ratio Jol/ JOZ will be fully defined, Evaluation of this
ratio constitutes one of the difficult problems of the theory of canformal

transformation [4]. Clearly we can always take Jol or equal to unity

2
and the unknown will be ]02 or [ respectively,

The transformation function which maps Bz onto B_ can be determined

2
in a straightforward manner, using Eqs. (4b) and (1) once the functional

relations 05 ei(¢i) are known, In this manner

F(z)
25 = ¥\(?ﬁ\ = &

can be found, However for convenience in applications (mathematical

theory of elasticity, vibrations, etc.) it is important to know the function

which maps an annulus onto the given shape; i.e., z = z(¢ ). Clearly

if € = £ (z) is known, in principle, one could invert this relation to
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obtain the above. However it is more convenient to determine z = z( ¢ )
directly once both integral equations-are solved, '

In general the function which maps B, onto Bz can be expanded in

3
a Laurent series [4]; i.e.,
> "
= g,, .
2 j:—oo '+\)P

(20a)

From a practical point of view, if the series above is truncated at a
finite number of temms, a sufficiently accurate transfommation will

result, Thus, we obtain

The unknowns, now are the coefficients I
Let us take for convenience jol = 1, We know that _/02 7 1 and we
will assume that it is a known value for the time being. Separating

Eq. (20b) into real and imaginary parts we obtain:
I-9p
Rez =x=9 . f "cos(i-qp10+

-p
J,....,.a,.P/J cos(1-p)8+ 4, Pcos 6 +
I+Sp
Fok cos (1+sp)E
“-SPJD ( P (2’b)
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I-9p

Imt= Y=é,_9_p/o Sln(l—qp)e +

I-p
PP dl—PP sin(1-p)6 + a,IDS/n e+

l+sp
+v 4 a,*spp sin(1+sp)0

(21b)

Equations (21) will now be used in developing a system of linear
algebraic equations with the ai's as the unknowns. The domains Bz
and BE are known since we have assumed, for the time being, that JOZ is
known and, consequently, corresponding to each point on C1 and C2 we can
write Eqs. (21) with only the ai“s as unknown. This is true since we have
already established the procedure by which the points on C1 and C2
can be related to their image points on 6/ 1 and ¥ 29 respectively, In
Egs, (21) we have (q + S + 1) unknown coefficients ai(q,S>/ 1). Therefore,
we require (q + S + 1) equations, At the points 6=0 and =/p Eqs. (21)
degenerate to a single equation., On the other hand corresponding to any
other point Eqs. (21) are independent and not degenerate. Whether we
choose to include one or both of Eqs., (21) in the system which we shall
solve for the ai's is unimportant, It is only essential that we finally
obtain a system of (q + S + 1) equations,

For points on Cl’ JD= /01 and 6, = 61((1)1)9 Taking any point

with coordinates (x1 3 Y1 j) the image point in the £-plane will be
]
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located on the unit circle b/ 1 and its coordinates will be given by

&N -
gl,J = /Ol c = cos 9,7J + 2 S/nal,j

s -1 .
The value of el,j will be known from el,j ‘F(tan yl,j/xl,j) since
the integral equations (6b) and (14) have been solved. The same procedure
is used for points on Cz. We can take any arbitrary number of points on
Cl; say n and m points on C2 for which /D= jDZ" Thus it will prove convenient

to rewrite Eq. (20b) in the following fom

n-1 -jp m I+, p
Z = .ZO Fjp "'E, Feip 5

(22a)

In this form we have (n + m) coefficients to determine. Using Eqs. (21)
for n - points on C1 (ﬁ= 1) and m - points on C2 (P=f2) we obtain a
linear system of equations in the (n + m) coeficients of the truncated
series (22a). Solving this linear system of equations the coefficients
are found and the approximate mapping function is known.

Let us return to the determination of /02' Methods are available
in the literature to find fz. However those methods are very difficult
to apply in practical problems, The following direct approach is suggested:
We take (n + m) points on C1 and C2 and we write Eq. (22a) in the following

fom:
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n-| I=jp M- 1+jb

(22 b)

Proceeding as previously explained we write down (n + m) equations

where now the unknowns are (n + m - 1) coefficients and f 2 However

we observe now that we have n - linear equations in the unknown coefficients
and m - nonlinear equations in the unknown coefficients and_)o 5 It is
quite convenient to obtain the unknowns by using a method of successive
approximations without solving the nonlinear system of equations directly.
The procedure is the following, As a first approximation to the mapping

function which maps the annulus B, onto the domain B, we detemine

g
the mapping function which maps the outside of the umit circle in the

£ -plane onto the outside of C1 in the Z-plane; i.e., we write

N=-1 :
(0) (0) =P S 10
g = J=o S i-jp 5 ) “Pe
(23a)
(o) ) )
The coefficients a are calculated from a system of n-linear equations

1-jp
obtained from n-points on Cl' For JD-l » EqQ. (23a) maps the unit circle

¥ 1 in the S-plane onto the contour C; in the Z-plane. For ﬁz» 1



Eq. (23a) maps circles in the ¢-plane onto approximate circles in the

z-plane, If the radius of C2 is R, we can obtain fz(l) by requiring that:

1 . 1)
e PP P, ©

In order to obtain a second approximation we write (n + m - 1)

equations in the (n + m - 1) coefficients; namely,

My ap et I+ p
N
= Z A ) % + Z =) , é
Jso 1P J=\ I+jP
(23b)
considering n-points on C1 and (m - 1) points on CZ' We exclude from
this system the equation corresponding to the point P 4)2 n= n/p
4 9
which has coordinates (x, _; y, . ) in the Z-plane. The system of
2,m* “2.,m (1)
(n +m - 1) equation is solved for the (n + m - 1) unknowns a using
(1) i
JOZ = ﬁz . Corresponding to the point +2 m = n/p we have
() =1 i) "JP m-1 (1) P
X +1 = 2 + a
Z,m yzm Jso = -JP J2=o H’JP S
(23¢c)



(O S
wherein ¢ = , © in/p . Separating real and imaginary parts we

calculate x(l) and y(l) . In general
2,m 2,m

1)
X # X
2,m 2,m

ﬂ)#
)'2 m 72 s

(2)
We must now evaluate the next approximation, JDZ , to )02. We follow

a procedure similar to that used in arriving at /Oz (1). We write Eq.

(23b) for O m ™= *Z n= n/p = ;i.e.,
o (1) \-2p (1 1-p
Iz I: coe +6I-Z,P lgzl - a"‘P ,gzi

) (1

P )
+ a| I§2l -aH-p l oo

1+2p
* 5u+2p '

&2 3

It turmns out that the predominant term in this sequence is the one involving
the first power of |52 I while the other terms more or less cancel

each other. Consequently, we take the following as a second approximation

tojz :

@
P2 W ®
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Using this new approximation we calculate a new mapping function as

before. If it turns out that

(2)

X =X
2,m 2,m
(2)

yZ,m yZ,m

to within some arbitrarily pre-selected accuracy, the procedure is completed
and the mapping function determined, If the above criterion is not satisfied,
the next approximation is determined by linear interpolation on a plot of
fz versus R wherein:
1
(1) )y % (1) 1% / %
S [Xz,m] + [Yz.m ]

1)

In essence, R denotes the i - th approximation to R, From this plot
we select the next approximation as that value of _/Dz which corresponds
to R, The procedure is repeated until the criterion is satisfied to any
desired accuracy, Once the mapping function is determined to the desired
accuraCy we can plot the boundaries of the resulting doubly connected
region and campare them with the given boundaries C1 and CZ' Both sets
of curves will have at least (n + m) points in common. As the number of
points chosed increases indefinitely we can assume that both sets of

curves will coincide. For practical reasons it is desirable to carefully
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select the collocation points so as to maintain a minimum number of
equations for an optimum approximation of the curve., The procedure
outlined above depends on the requirement that the mapping function trans-
forms the circular annulus point-by-point onto the desired domain. The
procedure may be extended to include conditions on the curvature of the
given contours as well, This statement will be illustrated in a

subsequent appiication,
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FURTHER APPLICATIONS

We will consider first a simple example which will serve as an
illustration of the method of successive approximations, Let Bz be
the domain shown in Figure 17, In this application it is our objective
to illustrate only the successive approximation procedure developed
in the previous section, The ¢ - ¢ relationship implied in the data
given below was independently developed using the method established
earlier for this purpose. The following conditions will be used in order

to find the function which maps B_ in the ¢-plane onto Bz in the

3
z-plane:
Inner Boundary (Cl)

= 0' = 0 4 =
1A~ 0" el,A 0); Re z = 1,00
b, At point A the radius of curvature is infinite

a, At point A (0

(]

c, At point B (0 =4 = 15°); Im z = 0,067

1,B 5 9,8
d, At point C (?1 c= 45°; o
]

-— ° . -
1,c - 45°); Im z = 0,283

Outer Boundary (CZ)
e, At point D (¢2’D =0° 6, =0°);Rez=R=1.243

£, At point E (¢2 g = 45% = 45°); Re z = R cos 45° = 0,879
]

®2,E

Eq. (22b) becomes:
2
= ZE a9, .
z J'=O '-4;) 5

(24)
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wherein the unknowns are:

a)s 335 3.7, 377, 35 and \sz

Using conditions a, b*, c and d we proceed to calculate the coefficients of

{O) <
2 =2 a g
=0 |-t
) ) (25a)

Solving the resulting four linear equations we obtain:

2(®) = 0,7789¢ + 0.2965 £™> - 0,0789¢ "7 + 0.0034¢ "1
(25b)
As a first approximation to ﬁ 5 We take
1)
JDZ -JOZ = 1,243 = 1,60
al(0)
and we determine the coefficients of
-4 ) 5

NS )
Z =2 a & +43 S
gl \—
J-O \)P

© . ¢

(o) (0) (0)
*9a ;7 + 49a_;7 + 121 a1

*Condition (b) reduces to a,

(See (5), p. 151).
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from a system of five equations using conditions a, b, ¢, d and e. The

function obtained is:

7 1

2(1) = 0.78836¢ + 0.2007¢™3 - 0.08836c7 + 0.00871¢ 1L - 0.0084£>

(25¢)

ia/4

For £ =1,60e we obtain

o _ .M
X =Yy =
2,E 2,E 0.865

(2)

We determine a new value of JDZ s viz,

2)
P, =r, Weans
%1

and repeating the same procedure we find

x(z) = y(z) = 0,905
2,E 2,E

(3) :
By linear interpolation we obtain/o2 = 1,58 and for £ = 1,58 e* m/4

(3) (3)
X =y = 0,879
2,E 2,E

The final expression for the mapping function is:

2z = 0,78726 £ + 0,2993 £ > - 0,08726 £/ + 0.0081 £ 11 - 0.007415¢ *°

(254d)

The maximum error in the mapping of C2 is less than one per cent (see
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TABLE 1), It is important to point out that addition of one single temm
(a5 gs) to Eq. (25a) reduces the error ten times. Using additional points
on Czo the mapping of the outer circle could be improved even more.

As a second example let us consider the domain B, shown in
Figure 8 with a square inner boundary (Cl) and a circular outer boundary
(CZ)" It is convenient to consider rounded corners instead of ideal
angular points. The conditions used for calculating the mapping function
are obtained from Figures 9 and 10 where the 6y = 6; (1)i) functional
relations are plotted. (See TABLE II)

Following the procedure previously explained we find f)z = 1,5912

and the corresponding mapping function is:

3 7 11

z = 5,9037737¢ - 0,9956698 ¢ - 0.0249356¢ T +

+ 0,08597233 ¢~

15 19 23

+ 0,009366175 £ > - 0,003723699 £ + 0,000958236¢ <~ +

+ 0,0241344 £ + 0.00005452 £°

(26)

The maximm error for C1 is of the order of 0.002 per cent and for C

is 0,02 per cent (See TABLE III).

2

It is important to point out that without including point 2 on
C2 the error for C2 is of the order of 0.1 per cent. It should be
remarked that following Wilson's approach [1] the error for C2 would be

of the order of ¢ 5 per cent,



Now we consider the domain Bz, shown in Figure 12, The web fraction
in this case is equal to 0,91, Using the relations plotted in Figure
11 we select the conditions shown in TABLE IV, Following the procedure
previously explained we find /OZ = 1,275 and the corresponding mapping

function:

7 11

- 0,01573124 ¢  +
23

z = 5,9712317 £ - 1,1506136 g'3 + 0,01595684¢ ~

15 9 27

- 0,0003575 ¢ 1 + 0.00008544 £ 27 +

9

+ 0,00365151 £
5

- 0,000217676 ¢

+ 0,1665126 £ > + 0.0088086 £

(27)
The maximum error in the mapping of Cz is of the order of +1 per cent
and for C1 is 0,002 per cent. (See TABLE V), The approach followed
in [1] would yield an error of # 10 per cent.

For the domain Bz shown in Figure 13 ( 0; = 8 ((Pi) is shown in
Figure 14, seven points were selected on C1 and two points on C,e (See
TABLE VI), The procedure of successive approximations yields
jo 2 = 1,1823 and the mapping function is:

= =5 -11 -16
z = 5.3248059¢ - 0,4027524 ¢ ~ + 0,0308024 ¢ - 0,0088643 ¢ +
+0,002342932 £ 21 - 0,000247309 ™% - 0.00011216 £73 + 0,054006 £*°
(28)

The error in both contours is practically zero (TABLE VII). It should be
pointed out that following the approach described in [1] the error would

be approximately + 3 per cent when mapping CZ’
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CONCLUSIONS

It is shown in the present investigation that the system of two
integral equations obtained by Kantorovitch and Muratov for the conformal
mapping of an arbitrary, finite, doubly connected region onto a circular
annulus simplifies considerably when the configuration has one or more
axes of symmetry and one of the boundaries is a circle. Once the
correspondence between boundary points is established the function which

maps the annulus B_ in the g-plane onto the given domain BZ in the z-plane

g
is obtained by a procedure of successive approximations. The method is
illustrated in several cases where the web fraction is close to one,

The numerical procedure has been perfommed only for regions with an

outer circular boundary as this was the main goal of this investigation,

If the configuration has p-axes of symmetry and the inner (rather than the
outer) boundary is a circle one could find the correspondence between
points by solving the integral equations (6a) and (15) and obtain the
mapping function using the method of successive approximations described
in Chapter IV, Configurations of this type are of practical interest also,
Consider, for example, the graphite brick of a gas-cooled nuclear reactor
which is a long bar of square cross section with a concentric circular
perforation [7]. The collocation technique used in [7], when solving
Laplace's equation, yields considerable error when the web fraction is
greater that 0.50. The method of conformal mapping presented in this

investigation does not have that limitation and the solution will be much

more accurate, For other configurations, such as doubly connected regions
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bounded by two concentric rectangles, it will be necessary to solve
Eqs. (6) to obtain the point correspondence between domains but the
mapping function may be determined as shown in Chapter IV, Configurations

of this type are of great interest in certain problems of microwave theory

(8]

-45-




1,

8.

REFERENCES

Wilson, H. B., '"A Method of Conformal Mapping and the
Determination of Stresses in Solid Propellant Rocket Granins.'
Report No. S-38, Rohm and Haas Co., Alabama., (Also Doctoral
dissertation of H. B. Wilson at the Department of Theoretical
and Applied Mechanics. University of Illinois, Urbana, Illinois)
1963,

Arango, R., "Simple Method of Conformal Transformation of a
Solid Propellant Rocket Motor Cross-Section." Master's THesis,
Mechanics Division, Catholic University, Washington, D. C. (1964).

Kantorovitch, L. V. and V. Muratov, "Conformal Mapping of
Simply and Multiply Connected Regions.'" Edited by Smirnov,
"Works of the Scientific Research Institute of Mathematics and
Mechanics," Leningrad State University Moscow, Leningrad, 1937.

Kantorovitch, L. V. and A. N, Krylov, "Approximate Methods of
Higher Analysis." Interscience Publishers, Inc., 1958, New York.

Granville, W. A., '"Elements of Differential and Integral Calculus."
Ginn and Co,, New York, 1941.

Bergman, Stefan, ''Partial Differential Equations, Advanced Topics."
Brown University, Summer Session, 1941.

Hockney, R. W., ' A Solution of Laplace's Equation for a RoundHole
in a Square Peg.'" Journal of the Society of Industrial and Applied
Mathematics, Vol. 12, No. 1, March, 1964.

Cruzan, O. R. and R. V., Garver, 'Characteristic Impedance of

Rectangular Coaxial Transmission Lines," IEEE Transactions on
Microwave Theory and Techniques, Number 5. September, 1964,

-46-



APPENDIX

Let us evaluate the expression

{(a)=0 8, (Tz)cos (Pe,r) da
r

when Z is a point Zc2 on Cz. From Figure 3 we obtain:

cos (nt T)

.———L—.dO’é:cjw

r

since dO'z. cos (nt,r) is the projection of dCJ"‘2 on the normal to the

direction of r. Thus

f(o2) - é 8, (T7) dw
2

Adding and substraction the argument corresponding to the point z which

will be defined as 62, we have

fon=6 [ezwz)—egawfé 8, * dw

C2 2
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However

21T

é 8, duw = ezf o = 216,
(o]

2

(see Figure 4 - a)

Accordingly:

flan=§ Lo (@m)-&]dw + 2m 6,

<2

Let us now evaluate f( 0‘2) when z is a point ZC2 (see Figure 4b).

The integral ezdw be comes

= é C
ﬁ@id«) i, gg , (2C,) dw
Wo+
=6, (z¢,) f A
Wo
—’—TTez (%Cz)
Finally
f(a) =§ 8, (T3)C0s (ne,r) d0; +1r0, (%)
2-=’L"CZ CZ r




TABLE I

Inner Boundary

)

Outer Boundary (CZ)

Coordinates of

the given curve

Calculated coordinates

using Eq. (25d)

X1,i Y1,i X1,i 1,i 1,i  %2,i lzz,i

1,00 0.000 1.00 0.000 0° ° 1.243
1.00 0,030 0,999 0.031 5° ° 1.245
1.00 0.060 0.995 0.061  12° 12° 1.251
0.98 0.067 0.984 0,067  15° 15° 1.253
0,94 0.060 0.940 0,061  21° 21° 1.257
0.86 0,050 0.863 0,051  26° 26° 1.257
0.75 0,060 0.713 0.058  32° 32° 1.252
0.60 0,090 0.585 0.090  36° 36° 1.248
0.44 0.160 0.447 0.156 40° 40° 1.245
0.283 0,283 0.283 0.283 45° 45° 1.243
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TABLE II

Inner Boundary (Cl) Outer Boundary (CZ)
Z
Z, 2,1
. 1,1 4
Point 1) . 0, . L .
1,1 1,i X, . . \ X
’ ’ 1,1 y1,1 Point ¢2’1 ez,i 2,1 y2,1
1 0° 0° 5.00 0 0 9,40
2 12° 5° 5.00 25° 22° 8.449
3 26,6° 15° 5.00 45° 45° 6.647
4 32.5° 20° 5.00 ‘
5 41° 30° 5.00
6 44,2° 40° 5.00
7 45°  45° 4,95
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TABLE III

Inner Boundary (Cl) Outer Boundary (Cz)
] 1,i 2,1
(degrees) X,i 1,4 2, Y2,i 'zz,i,
0 4,99995 0.0000 9.39988 0.0000 9,39988
2 4,99994 0,299774 9,.39151 0.39678 9.39989
4 4,999934 0.598611 9,36652 0.79151 9,39990
6 4,999977 0,.89553 9.32529 1.18220 9.39993
8 5.00008 1,189519 9.26843 1.56694 9,39995
10 5.,00002 1,47959 9.19677 1.94399 9.39998
12 5.00017 1.76487 9,11129 2,31180 9.40000
14 5.00004 2,0446 9.01315 2.66899 9,40002
16 4,99983 2.31796 8.90357 3.01449 9.40004
18 4,99973 2,58423 8.78384 3.347453 9,40006
20 4,99992 2.84242 8.65524 3,66721 9.40008
22 5.00039 3,09145 8.51902 3.97351 9.40013
24 5.00093 3.,33032 8.37636 4,26623 9.40020
26 5.00113 3,55823 8.22826 4,54551 9.40032
28 5.00076 3.77470 8.07567 4,81169 9.40047
30 4,99992 3.97932 7.91930 5.06529 9.40067
32 4,99918 4,17135 7.75969 5.30698 9.40089
34 4,99927 4,34923 7.59717 5.53756 9,40115
36 5.00041 4,51038 7.43188 7.75791 9.40140
38 5.00157 4,65142 7.26379 5.96895 9.40165
40 4,99992 4,76897 7,09263 6.17166 9.40185
42 4.,99074 4,86069 6.91800 6.36702 9.40200
44 4,96817 4,92634 6.73934 6.55595 9.40208
45 4,94999 4.94999 6,64828 6.64828 9.40209
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TABLE IV

Inner Boundary (Cl) Outer Boundary (CZ)
Z . Z N

. 1,i 2,1

Point . e, . 2 . 9 —— et
1)1,1 1,i xl,i yl,i Point 4)2,1 2,i xz’1 y2,1

1 0° 0° 5.00 1 0 0° 7.70
2 12° 5° 5,00 2 31.5°  22° 6.565
3 26,6° 15° 5.00 3 45° 45° 5.444
4 32,5°  20° 5.00
5 41° 30° 5,00
6 44,2°  40° 5,00
7 45° 45° 4,95
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TABLE V

Inner Boundary (Cl) Outer Boundary (CZ)
1,i 2,1
e(degrees)xl,i Y1,i X2, V2,1 ' 22,i
0 4,9994 0.0000 7.6996 0.0000 7.6996
3 4,9993 0.5403 7.6683 0.6656 7.697
6 4,9993 1.0706 7.5774 1.3103 7.6898
9 4,9993 1.5817 7.4354 1,9156 7.6782
12 4,9992 2,0658 7.2551 2.4676 7.6632
15 4,9993 2.,5169 7.0513 2,9579 7.647
18 4,9994 2.9312 6.8391 3,3844 7.6307
21 4,9993 3.3068 6.6313 3,7503 7.618
24 4,9990 3.6435 6.4369 4,0627 7.612
27 4,9988 3.9430 6.2610 4,3309 7.613
30 4,9997 4,2068 6.1040 4,5647 7.622
33 5.0025 4,4343 5.9626 4,7724 7.637
36 5.0054 4,6234 5.8314 4,9603 7.656
39 5.0033 4,7719 5.7039 5.1324 7.6731
42 4,9878 4,8796 5.5742 5.291 7,685
45 4,9494 4.9494 5.,4376 5.4376 7.689




TABLE VI

Inner Boundary (Cl) Outer Boundary (CZ)
1,i 22,1

Point  $ 5 G Ti V1. Point B, ; 8 %5 Vz4
1 0° 0° 5,00 1 0° 0° 6.30

2 6° 5° 5,00 2 30°  30° 4,202
3 13° 10° 5,00

4 19° 15° 5,00

5 24° 20° 5,00

6 27° 25°  5.00

7 30° 30° 4,95
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TABLE VII

Inner Boundary (Cl) Outer Boundary (Cz)
zl,i z2,1
8(degrees) X q 1,4 X5 4 Y2,i |zz,i
0 4,9999 0.0000 6,2999 0.000 6.300
3 5.0000 0.39055 6.2851 0.4348 6.300
6 4,9999 0.7730 6.2417 0.8579 6.300
9 4,9999 1,1402 6.1736 1.2589 6.300
12 5.0000 1,4854 6,0862 1.6295 6.300
15 4,9999 1.8037 5.,9862 1.9645 6.300
18 4,9995 2,0923 5.,8799 2,2619 6.300
21 5,0005 2,3479 5.7726 2,5232 6.2999
24 5.,0014 2,5635 5,6669 2.7531 6.300
27 4,9908 2,7324 5.5627 2,9590 6.300
30 4.,9499 2,8578 5,4567 3.1505 6,300
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